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Abstract 

Biological clocks regulate the proper periodicity of several processes at the cellular 
and organismal level. The cell cycle and circadian rhythm are the best characterized 
among these but several other biological clocks function in cells at widely variable 
periodicity. The underlying molecular networks are controlled by delayed negative 
feedbacks, but the role of positive feedbacks and substrate-depletion has been also 
proposed to play crucial roles in the regulation of these processes. Here we will 
investigate which features of biological clocks might be important for their efficient 
timekeeping. 

Evolution of biological clocks 

The ability of organisms to temporally co-ordinate their physiology is evolutionarily 
advantageous, and is therefore ubiquitous in nature. Organisms have evolved 
numerous so-called biological clocks to optimise their fitness, by co-ordinating their 
physiology with the availability of resources. Simple experiments monitoring the 
growth of bacteria against varying nutrient availability illustrate an enormous 
flexibility in deciding how frequently cells choose to divide. Yet, the developmental 
programs that lead to the replication of entire organisms (mammals) are relatively 
inflexible. The cell cycle, which culminates in cell division, is controlled by 
regulatory networks that have numerous conserved features and components across 
the eukaryotic kingdom (Harashima et al., 2013). 

Circadian clocks allow organisms to co-ordinate their physiology with the external 
time of day, enabling anticipation of changes in temperature, light availability, 
predator activity, etc. In contrast to the cell cycle, circadian clocks have evolved 
multiple times and have many different features (though some shared components) 
across the eukaryotic kingdom (Dalchau and Webb, 2011). The overall structure of 
circadian networks involves input pathways, a core oscillator, and output pathways 
(Dunlap, 1999). The core oscillator comprises multiple feedback loops that sustain 
circadian rhythms with a period of approximately 24 h. Input pathways enable the 
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oscillator to maintain synchrony with external time, while output pathways provide 
the biochemical means of the oscillator to regulate downstream physiology, 
including gene expression, metabolism and signalling.  

Synthesizing biological clocks 

In recent years, there has been a large rise in the number of attempts to engineer 
biological systems. The field of synthetic biology seeks to improve understanding of 
biological functions by attempting to re-create specific systems and their behaviours, 
using existing cells and their housekeeping components (RNA polymerase, 
ribosomes, proteasomes, etc.) as a chassis. The creation of biological devices is 
beginning to open new opportunities in industry, for example using bacteria to 
produce biofuels and medicines. A seminal work in this field was the construction of 
a biological clock, termed the repressilator, in which three transcriptional repressors 
were taken from non-oscillatory networks and inserted into Escherichia coli on a 
plasmid, but arranged as a cycle of repression (Elowitz and Leibler, 2000). Briefly, 
TetR was placed under the control of a LacI-repressible promoter, LacI was placed 
under the control of a CI-repressible promoter, and CI under the control of a TetR-
repressible promoter. It was demonstrated that oscillations in the abundance of the 
constituent proteins could be generated when the strengths of the interactions 
between the repressor proteins and their cognate DNA-binding domains were tuned 
to appropriate levels.  

 

Figure 1. Deterministic simulation of ring oscillators. Sequential inhibition of 
transcriptional repressors around a single feedback loop produces oscillations. a. Simulation 
of the repressilator (3-component ring oscillator) model in Elowitz & Leibler. b,c. Extending 
the model to 5 and 11 components also yields oscillations in protein copy number. Protein 1 
is plotted with a thickened black line to emphasize differences in oscillation waveform 
between different degree ring oscillators. 

The repressilator network is an example of a 3-stage ring oscillator. Ring oscillators 
are often used in electrical engineering for generating oscillations. However, only 
rings with an odd number of components can give oscillatory dynamics ((Sprinzak 
and Elowitz, 2005); examples in Figure 1). This is because each regulator inverts the 
gradient of the following regulator, which for an even number of components would 
result in an equilibrium ON-OFF-ON-OFF-…-ON-OFF. Using an odd number of 



3 
 

components breaks this pattern, and can yield oscillations. Increasing the length of 
the feedback loop with additional components leads to more square-like waveforms 
(Figure 1). It has recently been established that a repressilator motif also exists in 
nature, lying at the heart of the circadian clock in plants (Pokhilko et al., 2012) and 
in the core of transcriptional regulation of the cell cycle (Sriram et al., 2007). 

Oscillators have also been created in mammals (Tigges et al., 2009) as well as in 
cell-free conditions, mixing chemical compounds in such a way as to recapitulate 
interaction networks that can exhibit oscillatory behaviour, for instance using 
negative feedback. In various works dating back to the 1950s, the famous Belousov-
Zhabotinsky reaction was shown to both oscillate in time and propagate over 
excitable media (Field et al., 1972). More recently, the construction of chemical 
oscillators made from DNA has been demonstrated, inspired by predator-prey (PP) 
cycles (Fujii and Rondelez, 2012). A system of 3 reactions is sufficient to generate 
PP cycles: i. an autocatalytic growth of the prey species, ii. an autocatalytic predation 
of the prey, and iii. decay of the predator species. The DNA-based PP network relies 
on DNA polymerization-depolymerization reactions to recapitulate these reactions, 
and is capable of sustaining many (>20) cycles before eventual depletion of 
necessary cofactors. 

Mathematical analysis of biological clock architectures 

There is a long history on the mathematical analysis of biological clocks (Goldbeter, 
1997, 2002), still it is not fully understood what makes such a periodic system 
efficient. Biological clocks can run with a period of seconds (neural, cardiac, calcium 
rhythms) to months and years (ovarian, annual and ecological rhythms) and are 
regulated by delayed negative feedback loops that cause oscillations in the activities 
of system components (Goldbeter, 2008). Direct negative feedback loops lead to 
stabilization of steady states but delay in the loop and non-linearity in the interactions 
can induce oscillations (Goodwin, 1965; Griffith, 1968). This generic rule that 
delayed negative feedback loops form the basis of biological oscillations is now very 
well established for many biological clocks (Fig. 2A). The daily rhythms of the 
circadian clock might be the best example, where it was established that the 
existence of a direct time delay caused by a transcriptional-translational loop is 
driving the periodic appearance of a transcriptional repressor (Dunlap, 1999). 
Interestingly it was recently revealed that even in the absence of the delay caused by 
transcription-translation the circadian clock is robustly ticking (Nakajima et al., 
2005; O’Neill et al., 2011). Later it was proposed that a positive feedback loop might 
play a crucial role in the control of this reduced system (Mehra et al., 2006). Indeed 
the importance of positive feedback loops in the robustness of circadian clock 
regulation was proposed at other places as well (Tyson et al., 1999; Becker-
Weimann et al., 2004; Hong et al., 2009). These led to the conclusion that the 
circadian clock is controlled by interactions of positive and negative feedback loops. 
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Another highly investigated biological clock is driven by the cell cycle regulatory 
network. The controlled timing of DNA replication and cell division is determined 
by this clock and again earliest models considered a delayed negative feedback loop 
to drive this system (Goldbeter, 1991) and later results revealed the importance of 
positive feedback loops as well (Pomerening et al., 2005; Tsai et al., 2014). Thus it is 
a reoccurring pattern that crucial biological clocks are regulated by interlinked 
positive and negative feedback loops (Tsai et al., 2008; Ferrell Jr et al., 2011).    

 

Figure 2. Feedback loops leading to oscillations. A, negative feedback loop, where protein 
X activates Y, which activates Z which is eventually inducing the degradation of X. B, 
Substrate-depletion, where a substrate S is produced and piling up in this form until the 
product P cannot turn on its autocatalytic loop converting most S into P. As P is less stable 
than S, the system runs out of both S and P, thus S will pile up again and oscillations emerge.  

In the case of glycolytic oscillations of the metabolic system it was proposed very 
early that a positive feedback loop has a crucial role in controlling this biological 
clock and the oscillations appear as a result of the depletion of the substrate of an 
autocatalytic process (Higgins, 1964; Sel'kov, 1968). In this system a stable substrate 
is produced and converted into an unstable product in an autocatalytic manner (Fig. 
2B) leading to oscillations where S is slowly increasing until P reaches a threshold 
and quickly converts all S into P (Fig. 3). The requirements for this system to 
oscillate are: i, non-linear autocatalysis on the S�P transition, ii, a background S�P 
conversion independent of P to allow P reaching the threshold and iii, removal rate of 
P has to be much higher than that of S. Note that this system shows high resemblance 
to the above mentioned predator-prey cycles. In both cases the pile up of one species 
is followed by the conversion of this species to another species by an autocatalytic 
step and eventual removal of the second species.  

Interestingly one of the earliest cell cycle models was also working as a substrate-
depletion oscillator (Tyson, 1991) and since then it was further established that the 
kinetics of the substrate-depletion model resemble that of the negative feedback with 
positive feedback model (Fall et al., 2002). Indeed one can see the delayed negative 
feedback in the substrate-depletion model as P removes its activator S (by converting 
it to P). Thus we could state again that interlocked positive and negative feedbacks 
regulate glycolytic oscillations. It is also important to mention that the substrate-
depletion mechanism that leads to oscillations in time can drive spatial biological 
clocks such as pattern formation and emergence of travelling waves (Meinhardt, 
1982). 
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Figure 3. Deterministic simulation of a substrate-depletion oscillator. The substrate S is 
produced and first slowly converted into P. When P reaches a threshold it converts all S to P, 
which gets quickly destroyed. Leading to a bursting-like pattern in P oscillations.  

Efficiency of biological clocks 

Going back to the original question in the title: what makes biological clocks 
efficient? In fact, how to measure the efficiency of biological clocks? The robustness 
of the periodicity of biological clocks were investigated in the context of the 
circadian rhythm (Barkai and Leibler, 2000; Gonze et al., 2002) and the cell cycle 
(Steuer, 2004; Mura and Csikász-Nagy, 2008). Both were found to be quite robust to 
parameter perturbations and also to intrinsic noise resulting from the low molecular 
numbers present in the system. So far we have seen many parallels between the 
circadian clock and cell cycle regulatory systems. There is one major point where 
they differ. The period of the circadian clock is quite insensitive for temperature 
changes whereas the cell cycle time can be greatly influenced by alterations in 
temperature (Klevecz and King, 1982). This result might suggest that the circadian 
rhythm regulatory network is a more efficient time keeper, while the cell cycle 
regulatory systems is more efficient in adjusting its period to adapt to environmental 
changes (Zámborszky et al., 2007; Hong et al., 2014). Changes in temperature affect 
chemical reactions exponentially, following the Arrhenius equation. How such 
changes in reaction rates do not influence the period of the circadian clock is a 
debated question (Tyson et al., 2008). Several models have been worked out to 
understand what causes the temperature compensation in the circadian clock (Ruoff 
and Rensing, 1996; Leloup and Goldbeter, 1997; Gould et al., 2006; Hong et al., 
2007; François et al., 2012) and some more generic models of temperature 
compensation in biochemical reaction networks have also been proposed (Ruoff et 
al., 1997; Hatakeyama and Kaneko, 2012). Recently even a synthetic temperature 
compensated oscillator was created (Hussain et al., 2014), interestingly containing 
both a positive and a negative feedback loop. Furthermore non-biological ring 
oscillators on semiconductors were also designed to be temperature compensated 
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(Hayashi and Kondoh, 1993). Despite all of these results and theoretical ideas we 
still lack a coherent generic picture of what makes biological oscillators temperature 
compensated and in general robust in proper periodicity.   

Conclusions 

Recently it was established by Cardelli and Csikász-Nagy that a class of biological 
switches follow the dynamical features of an efficient computational algorithm 
(Cardelli and Csikász-Nagy, 2012). The Approximate Majority (AM) algorithm is 
used in distributed computing as a population protocol computing the majority of 
two finite populations by converting the minority population into the majority 
population (Angluin et al., 2008). It was shown that AM can mimic the dynamics of 
the cell cycle switch regulatory network that induces the transition between stable 
cell cycle states. It was also postulated that the cell cycle switch efficiency is 
maximal only when its dynamics fully captures that of the AM algorithm (Cardelli 
and Csikász-Nagy, 2012) and later this prediction was experimentally verified (Hara 
et al., 2012). We have seen that it is very well established that reliable biological 
time keeping mechanisms are regulated by the interconnection of such switch 
generating positive feedback loops with oscillation inducing negative feedback 
loops. The existence of negative feedback is essential and in almost all highly 
investigated systems the role of the positive feedback is important for the robust 
behaviour of the biological clock. It was established that the positive feedback 
module of the cell cycle regulatory network behaves like an efficient algorithm 
(Cardelli and Csikász-Nagy, 2012). Later, Cardelli (2014) established a theory to 
identify kinetically identically behaving regulatory networks. A future challenge will 
be the elucidation of which aspects of real life biological oscillators are important for 
their proper ticking and how far their kinetics could be associated to a minimalistic 
oscillator model.  
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